Scaffolding students in non-routine problem solving environment: The case of two mathematics teachers<p>Rutin olmayan problem çözme sürecinde öğrencilerin desteklenmesi: İki matematik öğretmeninin durumu

Authors

  • Abdulkadir Erdoğan Anadolu University
  • Emel Özdemir Erdoğan Anadolu University

Keywords:

Scaffolding, non-routine problem solving, middle school, mathematics, content analysis, Öğrenme desteği, rutin olmayan problem, ortaokul, matematik, içerik analizi

Abstract

The task of the teacher in designing learning environments and in guiding students throughout learning activities can be generally defined as scaffolding. Most of the students have difficulties in solving non-routine problems and cannot effectively use problem solving strategies. In this study, scaffoldings offered by the teachers for solving non-routine problems were examined using scaffolding techniques determined by Roehler and Cantlon (1997). Two mathematics teachers were participated in the study and the data were collected in an optional mathematics course for sixth graders via video-record of the teachers’ discourses on the solution of a same non-routine problem. The data were analysed using content analysis technique. The results showed that teachers intervened intensively in terms of scaffolding and the aims of these interventions mostly consisted of focusing students’ attention on the task and its accomplishment; while students centred techniques were less utilized. The results also showed that, although the scaffoldings provided by the teachers vary according to the way chosen for introducing the problem, they provided a dynamic and multi-dimensional scaffolding instead of adopting a fixed and unidimensional scaffolding. 

Extended English abstract is in the end of Full Text PDF (TURKISH) file.


Özet

Öğretmenin hedeflenen öğrenmelerin gerçekleşmesi için öğrenme ortamlarını oluşturması ve öğrencilerin çalışmalarına rehberlik etmesi en genel anlamda öğrenme desteği veya kısaca destek olarak tanımlanabilir. Bu çalışmada öğrencilerin önemli güçlükler yaşadıkları, problem çözme stratejilerini etkin ve uygun biçimde kullanamadıkları rutin olmayan problemlerin çözümü için öğretmenlerin sınıf ortamında verdikleri destekler Roehler ve Cantlon (1997) tarafından belirlenen destek türleri çerçevesinde incelenmiştir. Çalışmanın verileri iki matematik öğretmeninin 6. sınıf matematik uygulamaları dersi kapsamında aynı rutin olmayan matematik probleminin öğrenciler tarafından çözümü sırasındaki eylem ve söylemlerinin kaydedilmesi ile toplanmıştır. Veriler içerik analizi ile çözümlenmiştir. Çalışmanın bulguları, öğretmenlerin yoğun bir destek verme eğiliminde olduklarını, öğrencilerin problemin çözümüne ulaşmalarını ve görevden kopmamalarını sağlayacak destek türlerini daha ağırlıklı olarak kullandıklarını ve öğrenciyi sürecin merkezine oturtan destek türlerine daha az yer verdiklerini göstermektedir. Bulgular diğer yandan öğretmenlerin desteğinin problemin tanıtılması için seçilen yaklaşıma bağlı olarak değiştiğini ve öğretmenlerin sabit ve tek yönlü bir destek yerine çok yönlü ve dinamik bir destek yaklaşımı benimsediklerini göstermektedir. 


Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Abdulkadir Erdoğan, Anadolu University

Assoc. Prof. Dr, Education Faculty,  Department of Mathematics and Science Education, Mathematics Education

Emel Özdemir Erdoğan, Anadolu University

Assoc. Prof. Dr;  Education Faculty, Department of Mathematics and Science Education, Mathematics Education

References

Altun, M. (2006, Jully). Teacher trainees’ skills and opinions on solving non-routine mathematical problems. Paper presented at the International Conference on Teaching of Mathematics 3 (ICTM3), İstanbul, Turkey.

Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des mathématiques, 1970-1990. Kluwer Academic Publishers (Springer).

Byrnes, B. (2001, Second Edition). Cognitive Development and Learning in Instructional Contexts. Boston: Allyn and Bacon.

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en didactique des mathématiques, 19(2), 221-266.

Colipan X., (2016) Development of Scientific Activity in the classroom through the study of Combinatorial Games, the Example of the Chocolate Game, BOLEMA, vol. 30(55), 691-712.

De Bock, D., Verschaffel, L. & Janssens, D. (1998). The predominance of the linear model in secondary school students’ solutions of word problems involving length and area of similar plane figures. Educational Studies in Mathematics, 35, 65-83.

De Smet, M., Van Keer, H., & Valcke, M. (2008). Blending asynchronous discussion groups and peer tutoring in higher education: An exploratory study of online peer tutoring behavior. Computers and Education, 50(1), 207–223.

Elia, I., van den Heuvel-Panhuizen, M. & Kolovou, A. (2009). Exploring strategy use and strategy flexibility in non-routine problem-solving by primary school high achievers in mathematics. ZDM—The International Journal of Mathematics Education, 41, 605-618.

Gaskins, I.W., Rauch, S., Gensemer, E., Cunicelli, E., O’Hara, C., Six, L., & Scott, T. (1997). Scaffolding the development of intelligence among children who are delayed in learning to read. In K. Hogan & M. Pressley (Ed.), Scaffolding student learning: Instructional approaches and issues (pp. 43-73). Cambridge, MA: Brookline.

Godot, K. & Grenier, D. (2004, Jully). Research situations for teaching: a modelization proposal and examples. Paper presented at the Tenth International Congress on Mathematical Education (ICME 10), Copenhague, Denmark.

Kolovou, A. (2011). Mathematical problem solving in primary school. Doctoral thesis, Utrecht: Freudenthal Institute for Science and Mathematics Education, Faculty of Science, Utrecht University.

Lester, F., Garofalo, J. & Kroll, D. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes (Final report to the National Science Foundation, NSF Project No. MDR 85-50346). Bloomington: Indiana University, Mathematics Education Development Center.

Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman and Company.

Nancarrow, M. (2004). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem solving success. Unpublished Doctoral Thesis (Ph.D.), The Florida State University, Florida.

Polya, G. (1945). How to solve it. Princeton: Princeton University Press.

Puntambekar , S. & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational psychologist, 40 (1), 1-12.

Roehler, L. R. & Cantlon, D. J. (1997). Scaffolding: A powerful tool in social constructivist classrooms. In K. Hogan, & M. Pressley (Eds.), Scaffolding Student Learning: Instructional Approaches and Issues (pp.6-42). Cambridge, MA: Brookline Books.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Eds.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan.

Silliman, E.R., & Wilkinson, L.C. (1994). Discourse scaffolds for classroom intervention. In G.P. Wallach & K.G. Butler (Eds.), Language learning disabilities in school-age children and adolescents (pp. 27-54). Boston, MA: Allyn & Bacon.

Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes. In M. Cole, V. John-Steiner, S. Scribner and E. Souberman, (Eds.), Cambridge: Harvard University Press.

Vygotsky, L.S. (1981). The genesis of higher mental functions. In J.V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 144-188). Armonk, New York: Sharpe.

Wood, D., Bruner, J. S. & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.

Downloads

Additional Files

Published

2017-12-29

How to Cite

Erdoğan, A., & Özdemir Erdoğan, E. (2017). Scaffolding students in non-routine problem solving environment: The case of two mathematics teachers&lt;p&gt;Rutin olmayan problem çözme sürecinde öğrencilerin desteklenmesi: İki matematik öğretmeninin durumu. Journal of Human Sciences, 14(4), 4850–4868. Retrieved from https://j-humansciences.com/ojs/index.php/IJHS/article/view/5016

Issue

Section

Education