Modeling for present and future (2100) possible distribution of Anadolu Chestnut (Castanea sativa) in Anatolia
Anadolu Kestanesi’ nin (Castanea sativa) Anadolu’daki günümüz ve gelecek (2100) olası dağılışının modellenmesi
DOI:
https://doi.org/10.14687/jhs.v20i4.6405Keywords:
Anatolian Chestnut, Climate change, Species distribution model, MaxEnt, Türkiye, Anadolu Kestanesi, İklim Değişikliği, Tür Dağılış ModeliAbstract
Climate is a factor that closely controls the forming of the geographical environment and human life. One of the most obvious reflections of this effect is seen on biodiversity. Especially plants are among the most fragile species that will be affected by the changes that may occur in climatic conditions. The aim of this study is to determine the current and future potential distribution areas of Anatolian Chestnut, which grows in Anatolia and forms an important species of temperate-humid forests. For this purpose, today's distribution data regarding the distribution of Anatolian chestnut in Anatolia and its surroundings were provided. Climate data with 2.5 arc-minutes/~5 km resolution covering the period 1970-2000 obtained from the WorldClim 2.1 database were used to determine the current suitable habitat areas of the species. MIROC6 model with 2.5 arc-minutes/~5 km resolution for determining suitable future habitat areas, Common Socio-Economic (SSP) SSP2-4.5, SSP5-8.5 scenarios included in IPCC 6th Report and WorldClim 2.1 database covering the period 2081-2100 climate projection data applied. As a result, it has been revealed that the Anatolian chestnut is grown on the humid slopes of the mountains facing north, especially in the Black Sea coastal zone, in the Marmara and partalla in the Aegean Regions. According to the projection results, it is expected that the "suitable" distribution areas for the species will decrease by 33.9% according to the SSP2-4.5 scenario and by 79.7% according to the SSP5-8.5 scenario.
(Extended English summary is at the end of this document)
Özet
İklim coğrafi çevrenin şekillenmesini ve insan yaşamını çok yakından kontrol eden bir etmendir. Bu etkinin en belirgin yansımalarından biri biyoçeşitlilik üzerinde görülmektedir. Özellikle bitkiler iklim koşullarında meydana gelen değişkenliklere karşı en kırılgan türlerin başında gelmektedir. Bu çalışmanın amacı ılıman- nemli ormanların önemli bir türünü oluşturan Anadolu Kestanesi’ nin Anadolu’daki günümüz ve gelecekteki potansiyel yayılış alanlarını belirlemektir. Bu amaçla Anadolu Kestanesi’ nin Anadolu ve çevresindeki dağılımına ilişkin günümüz dağılış verileri temin edilmiştir. Türün günümüzdeki uygun habitat sahalarını belirlemek için WorldClim 2.1 veri tabanından temin edilen 1970-2000 periyodunu kapsayan 2.5 arc-dakika/~5 km çözünürlüklü iklim verileri kullanılmıştır. Gelecekteki uygun habitat sahalarının belirlenmesinde 2.5 arc-dakika/~5 km çözünürlükte MIROC6 modeli, IPCC 6. Raporunda yer alan Ortak Sosyo-Ekonomik (SSP) SSP2-4.5, SSP5-8.5 senaryoları ve WorldClim 2.1 veri tabanından elde edilen ve 2081-2100 dönemini kapsayan iklim projeksiyonu verisi kullanılmıştır. Sonuçta Anadolu Kestanesi’ nin günümüzde özellikle Karadeniz kıyı kuşağı olmak üzere Marmara ve kısmen de Ege Bölgelerinde dağların kuzeye bakan nemli yamaçlarında yetiştiği ortaya konmuştur. Projeksiyon sonuçlarına göre ise tür için “uygun” yayılış alanlarının SSP2-4.5 senaryosuna göre %33.9, SSP5-8.5 senaryosuna göre ise %79.7 oranında azalması beklenmektedir.
Downloads
Metrics
References
Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16:476–487.
Atalay, İ. (1994). Türkiye Vejetasyon Coğrafyası, Ege Üniversitesi Basımevi, Bornova, İzmir.
Avcı, M. (2012). Çeşitlilik ve endemizm açisindan Türkiye' nin bitki örtüsü. Coğrafya Dergisi, 13, 27- 55.
Bahadır, M. & Emet, K. (2010). Türkiye’de ana iklim tiplerini karakterize eden belli başlı ağaç türlerinin CBS ile analizi. TUBAV Bilim Dergisi, 3, 1, 94- 105.
Barstow, M. & Khela, S. (2018). Castanea sativa. The IUCN Red List of Threatened Species 2018: e.T202948A67740523. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T202948A67740523.en.
Baylan, K. A., & Ustaoğlu, B. (2020). Emberger biyoiklim sınıflandırmasına göre Türkiye’de Akdeniz biyoiklim katlarının ve alt tiplerinin dağılışı. Ulusal Çevre Bilimleri Araştırma Dergisi, 3(3), 158-174.
Beale, C.M. & Lennon, J.J. (2012). Incorporating uncertainty in predictive species distribution modelling. Phil. Trans. R. Soc. B., 367: 247–258. doi:10.1098/rstb.2011.0178247
Beaumont, L.J., Hughes, L. & Pitman , A. J. (2008). Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters, 11(11): 1135-1146.
Beridze, B., Sękiewicz, K., Walas, Ł., Thomas, P. A., Danelia, I., Fazaliyev, V., ... & Dering, M. (2023). Biodiversity protection against anthropogenic climate change: Conservation prioritization of Castanea sativa in the South Caucasus based on genetic and ecological metrics. Ecology and Evolution, 13(5), e10068.
Beton, D. (2011). Effects of Climate Change on Biodiversity: A Case Study on Four Plant Species Using Distribution Models. (Doktora Tezi), Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
Bystriakova, N., Peregrym, M., Erkens, R. H., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and biodiversity, 10(3), 305-315.
Canturk, U., & Kulaç, Ş. (2021). The effects of climate change scenarios on Tilia ssp. in Turkey. Environmental Monitoring and Assessment, 193(12), 771.
Conedera, M., Krebs, P., Gehring, E., Wunder, J., Hülsmann, L., Abegg, M., & Maringer, J. (2021). How future-proof is Sweet chestnut (Castanea sativa) in a global change context?. Forest Ecology and Management, 494, 119320.
Dagtekin, D., Şahan, E. A., Denk, T., Köse, N., & Dalfes, H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PLoS One, 15(11), e0242280.
Davis, P. H. (1982). Flora of Turkey and the East Aegean Islands, Vol. 10. Edinburgh University Press, Edinburgh.
Dönmez, Y., & Aydınözü, D. (2012). Bitki özellikleri açısından Türkiye. Coğrafya Dergisi, 1(24), 1-17.
Duan, R.Y., Kong, X.Q., Huang, M.Y., Fan, W.Y.&Wang, Z.G. (2014). The predictive performance and stability of six species distribution models. PLoS One, 9(11):e112764
Duran, C. (2016). Bartın-Sinop illeri arası (Türkiye’nin kuzeyi) alandaki kestane (Castanea sativa Mill.) ormanlarının dağılışı. TÜCAUM Uluslararası Coğrafya Sempozyumu, 13-14 Ekim 2016 /Ankara
Erlat, E., & Ölgen, K. (2008). Türkiye'de don olaylı gün sayılarının başlama ve sona erme tarihlerinde gözlenen eğilim ve değişiklikler, V. Ulusal Coğrafya Sempozyumu, 16(17), 331-338.
Elibüyük, M. ve Yılmaz, E. (2010). Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafî Bilimler Dergisi, 8(1), 27–55.
EFDAC (2015) European Forest Data Centre. Species Distribution. Available at: http://forest.jrc.ec.europa.eu/download/data/species-distribution/.
Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araújo, M. B., ... and Guisan, A. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global change biology, 17(7): 2330-2341.
Gábor, L. Jetz, W., Lu, M., Rocchini, D., Cord, A., Malavasi, M., Zarzo-Arias, A., Barták, V. & Moudrý, V. (2022). Positional errors in species distribution modelling are not overcome by the coarser grains of analysis. Methods in Ecology and Evolution, 13(10):2289-2302.
Gupta, R., Sharma, L.K., Rajkumar, M. et al. (2023). Predicting habitat suitability of Litsea glutinosa: a declining tree species, under the current and future climate change scenarios in India. Landscape Ecol Eng. https://doi.org/10.1007/s11355-023-00537-x
Günal, N. (2013). Türkiye’de İklimin Doğal Bitki Örtüsü Üzerindeki Etkileri. ACTA TURCICA, V,1.
Güner, A., Özhatay, N., Ekim, T., and Başer, K. H. C. (2001). Flora of Turkey and the East Aegean Islands, Vol. 11. Edinburgh University Press, Edinburgh.
Güner, A. (2012). Castanea. Şu sitede: Bizimbitkiler (2013). <http://www.bizimbitkiler.org.tr>, [er. tar.: 20 08 2023].
Hernandez, P.A., Graham ,C.H., Master, L.L.& Albert, D.L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5),773–785.
Hirzel, A., & Guisan, A. (2002). Which is the optimal sampling strategy for habitat suitability modelling. Ecological modelling, 157(2-3), 331-341.
Huntley, B., Birks, H.J.B., (1983). An Atlas of Past and Present Pollen Maps for Europe: 0–13000 Years Ago. Cambridge University Press, Cambridge, UK.
İçel, G. & Ataol, M. (2014). Türkiye’de yıllık ortalama sıcaklıklar ile yağışlarda eğilimler ve NAO arasındaki ilişkileri (1975-2009). Coğrafya Dergisi, 28, 55-68.
İpekdal, K., & Beton, D. (2014). Model predicts a future pine processionary moth risk in Artvin and adjacent regions. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 15(2), 85–95.
Kargıoğlu, M., Cenkci, S., Serteser, A., Evliyaoğlu, N., Konuk, M., Kök, M.Ş., Bağcı, Y. (2008). An Ethnobotanical Survey of Inner-West Anatolia, Turkey. Hum Ecol., 36, 763–777. https://doi.org/10.1007/s10745-008-9198-x.
Ketin, İ. (1966). Anadolu’nun Tektonik Birlikleri. Maden Tetkik ve Arama Dergisi, 66: 20-37.
Khan, A. M., Li, Q., Saqib, Z., Khan, N., Habib, T., Khalid, N., ... & Tariq, A. (2022). MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests, 13(5), 715.
Koç, D. E., Biltekin, D., & Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14(12), 1-13.
Koç, D. E., Dalfes, H. N., & Meral, A. (2022). Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya Dergisi, (44), 81-95.
Koc, D. E., Svenning, J. C., & Meral, A. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82.
Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21(5), 1251–1266.
Krebs, P., Conedera, M., Pradella, M., Torriani, D., Felber, M., Tinner, W. (2004). Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veg. Hist. Archaeobotany, 13, 145–160. http://dx.doi.org/10.1007/s00334-004-0041-z
Loarie, S. R., Carter, B. E., Hayhoe, K., McMahon, S., Moe, R., Knight, C. A. & Ackerly, D. D. (2008). Climate change and the future of California's endemic flora. PloS one, 3(6): e2502.
Li, S., Wang, Z., Zhu, Z., Tao, Y. & Xiang, J. (2023). Predicting the potential suitable distribution area of Emeia pseudosauteri in Zhejiang Province based on the MaxEnt model. Sci Rep, 13, 1806 (2023). https://doi.org/10.1038/s41598-023-29009-w
Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC ecology, 18(1), 1-12.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. (2008). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distribution, 15(1): 59-69.
Mattioni, C., Martin, M.A., Pollegioni, P., Cherubini, M., Villani, F. (2013). Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am. J. Bot., 100, 951–961. http://dx.doi.org/10.3732/ajb.1200194.
Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell & Environment, 23(7), 701-710.
Paź-Dyderska, S., Jagodziński, A. M., & Dyderski, M. K. (2021). Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Regional Environmental Change, 21(1), 18. https://doi.org/10.1007/s10113-020-01745-z
Pitelka, L. F., & Plant Migration Workshop Group. (1997). Plant migration and climate change: a more realistic portrait of plant migration is essential to predicting biological responses to global warming in a world drastically altered by human activity. American Scientist, 464-473.
Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., annextremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139–146.
Roces-Díaz, J. V., Jiménez-Alfaro, B., Chytrý, M., Díaz-Varela, E. R., & Álvarez-Álvarez, P. (2018). Glacial refugia and mid-Holocene expansion delineate the current distribution of Castanea sativa in Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 152-160.
Ruiz-Labourdette, D., Schmitz, M. F., & Pineda, F. D. (2013). Changes in tree species composition in Mediterranean mountains under climate change: Indicators for conservation planning. Ecological Indicators, 24, 310-323.
Sargın, S.A. & Büyükcengiz, M. (2019). Plants used in ethnomedicinal practices in Gülnar District of Mersin, Turkey. J. Herbal Med., 15, 100224.
Sarıkaya, A.G. & Örücü, Ö.K. (2019). Prediction of potential and future distribution areas of Anatolian chestnut (Castanea sativa mill.) by using Maximum entropy (maxent) modelling depending on climate change in Turkey. International Journal of Ecosystems and Ecology Science (IJEES), 9 (4), 699-708. https://doi.org/10.31407/ijees
Su, P., Zhang, A., Wang, R., Wang, J. A., Gao, Y., & Liu, F. (2021). Prediction of future natural suitable areas for rice under Representative Concentration Pathways (RCPs). Sustainability, 13(3), 1580.
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293.
Tanoğlu, A. (1947). Türkiye’nin İrtifa Kuşakları. Türk Coğrafya Dergisi, IX-X, 37-63.
Toledo M, Poorter L, Peña-Claros M, Alarcón A, Balcázar J, Leaño C, Licona JC, Llanque O, Vroomans V, Zuidema P, Bongers F (2011) Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology 99(1): 254264. https://doi.org/10.1111/j.1365-2745.2010.01741.x
Topal, S., Keller, E., Bufe, A. & Koçyiğit, A. (2016). Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology, 259: 55-69.
Türkeş, M. (1998). Influence Of Geopotential Heights, Cyclone Frequency and Southern Oscillation On Rainfall Variations in Turkey. International Journal of Climatology, 18: 649– 680.
Türkeş, M. (1999). Vulnerability of Turkey to Desertification With Respect to Precipitation and Aridity Conditions. Turkish Journal of Engineering and Environmental Sciences. Tübitak, Ankara
Türkeş, M. (2021). Türkiye’nin su iklimi, iklim değişikliği ve 2019-2020 kuraklığı. EKOIQ, 92, 90-97.
Türkoğlu, N., Çiçek, İ., & Şensoy, S. (2012). Türkiye’de iklim değişikliğinin meyve ağaçları ve tarla bitkilerinin fenolojik dönemlerine etkileri. TÜCAUM Uluslararası Coğrafya Sempozyumu Kitabı, Ankara, 60-71.
Ustaoğlu, B., Tunçat, K. A., & Koç, D. E. (2023). Impacts of Climate Change on Precipitation and Temperature Climatology in Türkiye from Present to Future Perspective. In Urban Commons, Future Smart Cities and Sustainability (pp. 403-426). Cham: Springer International Publishing.
Varol, T., Canturk, U., Cetin, M., Ozel, H. B., & Sevik, H. (2021). Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. Forest Ecology and Management, 491, 119199.
Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M., & Mark W. Schwartz (2009). Using species distribution models to predict new occurrences for rare plants. Diversity and Distribution, 15(4):565-576.
Wisz, M.S, Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Dormann, C.F., Forchhammer, M.D., Grytnes,J.A., Guisan,A., Heikkinen, R.K., Høye,T.T., Kühn,I., Luoto, M., Maiorano, L., Nilsson, M.C., Normand, S., Öckinger, E., Schmidt, N.M., Termansen, M., Timmermann, A., Wardle, D.A.,Aastrup,P. & Svenning, J.C (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88(1):15-30
Wright, S. J. (2010). The future of tropical forests. Annals of the New York Academy of Sciences, 1195(1), 1-27.
Xie, C., Tian, E., Jim, C. Y., Liu, D., & Hu, Z. (2022). Effects of climate‐change scenarios on the distribution patterns of Castanea henryi. Ecology and Evolution, 12(12), e9597.
Yaltırık, F. (1993). Dendroloji Ders Kitabı II. İ.Ü. Orman Fak. Yayınları, İ.Ü. Yayın No:3767, O.F. Yayın No:420, İstanbul.
Yılmaz, E., & Çiçek, İ. (2018). (Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri) Detailed Köppen-Geiger Climate Regions of Turkey. International Journal of Human Sciences, ISSN, 2458-9489.
Zhang, L., Zhu, L., Li, Y., Zhu, W., & Chen, Y. (2022). Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree (Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China. Forests, 13(1), 126.
Zhao, Z., Xiao, N., Shen, M., & Li, J. (2022). Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Science of the Total Environment, 842, 156867.
Zimmermann, N.E., Edwards, T.C., Graham, C.H., Pearman, P.B. & Svenning, J.C (2010). New trends in species distribution modelling. Ecography, 33(6):985-989.
URL 1: https://mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2022-yagis.pdf (ER.T. 201/08/2023).
URL 2: https://mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2022-ortalama-sicaklik.pdf (ER.T. 201/08/2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Human Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors can retain copyright, while granting the journal right of first publication. Alternatively, authors can transfer copyright to the journal, which then permits authors non-commercial use of the work, including the right to place it in an open access archive. In addition, Creative Commons can be consulted for flexible copyright licenses.
©1999 Creative Commons Attribution-ShareAlike 4.0 International License.